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Abstract-The hydrodynamics characteristics of buoyancy-driven convection loop containing an elec- 
trically-conducting fluid in a transverse magnetic field is investigated analytically using one-dimensional 
model. The lower portion of the loop is heated and the upper portion is cooled, both isothermally, while 
the middle portion is insulated. The model was based on the use of Hartmann plane Poiseuille flow solution 
for estimating loop shear stress. The study covers the range of Grashof number, Gr, from lo2 to 106, the 
Hartmann number, Ha, from 0 to 20, and the Prandtl number, Pr, from 0.02 to 7. The proposed closed 
form analytical solution of the magnetohydrodynamic generator predicts the flow velocity and the induced 
current in terms of the flow and geometric parameters. It is shown also that at low Prandtl numbers, 
Pr << 1, there exist an optimal Hartmann number, Ha,,,, that maximises the induced electric current and 
Ha,,, depends weakly on Grashof number. The existence of an optimal Hartmann number is significant in 
optimising the loop efficiency of conversion from thermal to electrical energy in presence of a transverse 

magnetic field. 0 1997 Elsevier Science Ltd. 

‘I. INTRODUCTION 

Natural convection in closed loops plays an important 
role in the design Iof thermal energy systems which are 
characterised by at least one heat source and some 
heat sinks positioned at some height about the source. 
When a transverse magnetic field is applied on an 
electrically conducting fluid in the loop, convective 
motion is damped and an electric current is induced. 
The interest in such problem has two aspects. The first 
aspect lies in industrial processes or energy systems 
that require control of flow destabilisation or pro- 
hibition of motion. The second interest lies in the 
possible use of the system for electricity generation. 
In the power industry, among methods of generating 
electric power ir: one in which electric energy is 
extracted directly from a moving conducting fluid in 
a magnetic field. The difference here is that the motion 
is produced by t’hermosyphonic motion of the con- 
ducting fluid. 

Several aspects of convective motion characteristics 
of single-phase closed loop thermosyphon have been 
much discussed in literature particularly in relation to 
stability characteristics, Creveling et al. [l] studied the 
dynamics of the thermosyphonic flow in single circular 
loop system exhibiting typical nonlinear effects using 
one-dimensional analysis and verifying his model with 
experimental observations. Recently, Erhard et al. [2] 
and Davis and Roppo [3] investigtited double-loop 
systems where two circular loops were coupled by a 
heat exchanger for different coupling locations. Their 
experiments and mathematical models confirmed the 

existence of a subcritical parameter range that alter- 
natively exhibit steady as well as time dependent 
behaviour. Related work reported in literature is for 
forced convection. The first MHD channel flow was 
first investigated in 1930 by Hartmann [4], who con- 
sidered plane Poiseuille flow with a transverse mag- 
netic field. No work has been reported so far on the 
effect of a transverse magnetic field on thermosyphonic 
motion. 

Closed form solutions are usually of great import- 
ance in magnetohydrodynamic flows because they can 
be used to check numerical solutions and to develop 
understanding into the relative influence of the physi- 
cal parameters involved in the problem. This can be 
accomplished by making simplifications whereby the 
governing equations reduce to a form that can be 
solved analytically. In this work, an analytical one- 
dimensional solution based on parallel flow approxi- 
mation of the loop convection in presence of a trans- 
verse magnetic field is developed. The fluid is assumed 
incompressible, electrically conducting and fully- 
developed with no applied electric field. The model is 
based on the use of Hartmann plane Poiseuille flow 
solution for estimating loop shear stress. The range of 
validity of the approximate solution is discussed. The 
optimisation of the system parameters for max- 
imisation of the induced electric current is inves- 
tigated. 

2. PROBLEM STATEMENT 

The essential features of the thermosyphonic closed 
loop are shown in Fig. 1. The loop has a height 2L, 
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NOMENCLATURE 

A defined in equation @a) t time 
A’ A/AT T temperature 
B defined in equation (8b) vo bulk induced velocity in the loop 
B B/AT (x, y, z) Cartesian co-ordinates. 
Bo magnetic field strength 
c specific heat Greek symbols 
2d channel width thermal diffusivity 
EC Eckert number, Vo’/CAT ; thermal expansion coefficient 
f friction factor for laminar channel flow AT temperature difference between hot 
g gravitational acceleration and cold segments, TH - T, 
Gr Grashof number, gpATd3/v2 l- heat transfer parameter defined in 
h heat transfer coefficient in the loop equation (20) 

channel 0 dimensionless temperature, 
Ha Hartmann number, Bod(a/pov)‘i2 (T- TJ(T, - T,) 
j induced electric current p fluid viscosity 
K defined in equation (12b) V kinematic viscosity of the fluid 
2L vertical height of the loop PO density of the fluid 
21 height of the insulated region 0 electrical conductivity 
m defined in equation (6) r shear stress in the channel. 
NU Nusselt number, hdjk 

P pressure Subscripts 
Pr Prandtl number, v/cl b bulk values 
QL heat transfer rate carried by the loop cold 
Re Reynolds number, V,d/v ; friction factor model 
S parameter defined in equation 12(c) H hot. 

_ 
/ 77 1 TC Y g - 2d - 

7 
I 

x 

1 
2 

loop is electrically conducting with an electrical con- 
ductivity 6, and a coefficient of thermal expansion /I. 
Examples of electrically conducting fluids are 
mercury, sodium, sea water or ionised gases. The mag- 
netic field B, is applied perpendicular to gravity in x- 
direction. The thermophysical properties of the fluid 
at a reference temperature T, are assumed to be con- 
stant except for the density which is related to tem- 
perature according to p = po(l -j?(T- T,)). The 
lower half of the loop wall is isothermally heated to 
TH and the upper half of the loop wall is isothermally 
cooled to T,-, which is taken as the reference tempera- 
ture. The central region of the loop of length 21 is 
insulated. 

Assuming the channel width of the loop to be much 
smaller than its length L, i.e. 2d << L, the one dimen- 
sional model of the flow and heat transfer can be 
used with sulficient accuracy [2]. To simplify the co- 
ordinate system, end effects of the top and bottom 

Fig. 1. The essential features of the thermosyphonic closed 
loop. 

parts of the loop are neglected and the origin of the 
y-axis is placed in the midpoint of the left segment of 
the loop, parallel to the flow direction as it moves 
against gravity and then with gravity. The flow is 
steady and is assumed fully-developed such that the 

an internal channel half-width of d. the upper and physical flow variables are independent of the axial 
lower connecting portions of the vertical channel are coordinates. These variables are the cross-sectionally 
semi-circular. The boussinesq fluid contained in the averaged velocity PO and the associated wall shear 
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stress. Axial heat (conduction and viscous heating are 
neglected and the steady conservation equations 
of momentum and energy for the fully-developed 
hydrodynamic flow are written in terms of V,, and 
bulk temperature T,, : 

momentum 

(1) 

energy in the isothermal regions -2L+l< y < - 1 
andl<y<2L--I 

pc vo!$- =~{Tw-Tb(y)}+aYiQ3~ [ 1 
(2) 

and energy in the insulated regions -I < y < + 1 and 
2L-l< y 2 -21,+1 

pc 
[ 1 
v,“” = uV;B; ay 

where h is the convection heat transfer coefficient in 
the channel, oBi Vz is the Joulean heating term, and 
T, is the loop wall temperature in the isothermal 
regions defined by : 

T, = TH for -2L+I< y and y< -1 (4a) 

T,=T, forl<y<2L-I. (4b) 

Equations (l)-(3’) are solved for steady-state con- 
ditions in the next section. 

3. ANALYTKAL STEADY-STATE SOLUTION 

3.1. Hartmann-plane Poiseuillejlow model 
The steady-state conditions fully-developed flow 

indicate that the mass flux pV, is constant along the 
loop. So the energy transfer equation (3a) can be 
solved for temperature distribution along the loop in 
terms of VO: 

AemmY + 1”” + 
2oB; V;d 

h 

Tb = 
for -2L+l<y< -1 

BeemY+ T + 
2aB; V;d 

c h 

for+l<y<2L-1 

(5a,b) 

where the parameter m is given by : 

m = h/(2pCVod). (6) 

Solution of equation (3b) in the insulated sections 
gives a linearly increasing bulk temperature due to 
Joulean heating in each segment. Therefore, imposing 
the continuity condition of bulk temperature in those 
segments : 

T,(l) = Tb(-1)+2oB;V,,l/pC (74 

T,(-2L+Z) = T,,(2L-I)+2oB;V,,l/pC (7b) 

leads to expressions for the parameters A and B of 
equation (5) given by : 

A = (TH-Tc) 
[I _e-zmW-O] 

[e- m(*L-31) _em(2L-I) 1 
2cBt V,,l [l +e-2m(Lp’)] -~ 

PC [e- m(2L-31) _em(2L-r) l (84 

B = Ae’“’ + 
2oB; V,,l 

(T, - Tc) + ~ 
PC 1 em’. W) 

In this development it is assumed that h is constant 
throughout the loop. This assumption is valid for 
small values of V,. for moderate values of V. the heat 
transfer is generally improved with h varying as 
h cc VAj3 in the laminar flow regime [2]. 

Now the momentum equation (2) integrated 
around the loop gives : 

(T--ddy 

- s -’ (T- To) dy+ 
-2L+, s 

-‘(T- T,,) dy 
-L 

+ 

s 
’ (T-T,)dy+ ‘(T-To)dy 
-I 

5 
2L-I 

s 

2L 

- 
CT- To) dy- CT- To) dv 1 (9) 

L ZL-I 

which shows balance between buoyancy, Lorentz 
force and friction where pressure variations in the 
loop are only due to gravity. The negative and positive 
signs of the buoyant terms is related to gravity direc- 
tion where it is positive for the upward going flow and 
negative for the downward going flow and in each 
integral segment the respective bulk temperature is 
used depending if it is an isothermal region or an 
insulated region. The flow in the channel is assumed 
fully developed and the solution of Hartmann [4] for 
MHD plane Poiseuille flow with a transverse magnetic 
field is used to correlate the walls shear stress force to 
the mean flow velocity V, by : 

z =!5Ha2 tanh(Ha) 
d Ha- tanh(Ha) (10) 

where Ha is the Hartmann number is defined by 
Ha = B,,d(o/p,v)1i2. The square of the Hartmann num- 
ber represents the ratio of the Lorentz force from the 
induced current to the viscous forces. For comparison, 
the quantity (a/pOv)“’ for mercury (Pr z 0.02) is 
about 2.7 x lo5 while for sea water (Pr x 7) it is about 
65. Using the value of z in (10) and evaluating the 
integral of the buoyancy term using the temperature 
distribution obtained in equation (5), reduces equa- 
tion (8) to the following : 
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4~ V, Ha2 tanh Ha 
d2 (Ha - tanh Ha) 

+4ap, V,Bi = pg/I $(2emL - em(2L-‘) -em’) 

+@g ~(a(em’_em12~-“)_B(e-“‘+e-“‘*~-“) F 1 
(11) 

Equation (11) gives a correlation between the induced 
flow velocity V, and the other flow and geometric 
parameters in the system. Equation (11) can then be 
reduced to a non-dimensional form in the following 
correlation : 

4ReHa2 l+ 
[ 

tanh Ha 
Ha- tanh Ha 1 

Gr = 
4RePr[fl (12a) 

(Lld)Nu 

where K is defined as 

K = $~t’(2~“‘~ _ ,m, _ em@-9 

+B’(e-“‘+e-“‘(2L-‘)-2e-mL)] (12b) 

S is defined as 

S = ~[A’(emr_emc2L~,))+B’(e-ml_e~m(2L-l))] 

(12c) 

and A’ and B’ are dimensionless terms obtained from 
equation (8) and given by 

A’ = 
[1 _e-2m’L-‘)] 

[e- 
m(2L-31) _em(2L~l) 1 

2Ha2 Ec(l/d) [1 _e-Zf+O] 
- 

Re [e- m(ZL-3/) _em(2L-I) 1 
(12d) 

(124 

The dimensionless parameters appearing in equation 
(12) are defined as : Re is the Reynolds number, 
Re = V,d/v, Gr is the Grashof number, Gr = 
gaATd3/v2, where AT is the temperature difference 
between hot and cold walls, AT = T, - T,, Ha is the 
Hartmann number, Nu is the Nusselt number, 
Nu = hd/k, EC is the Eckert number, EC = Vo2/CAT 
and Pr is the Prandtl number, Pr = v/a. The dimen- 
sionless parameters mL and ml can also be expressed 
in terms of the flow and geometric parameters of the 
system, where mL = (Nu/2RePr)(L/d) and ml = (Nu/ 
ZRePr)(l/d). Note that in the solution there is no 
restriction on the relative size, Z/L, of the insulated 
region to the isothermal regions. The general solution 

obtained in equations (12) is valid for all values of 
Prandtl numbers, Hartmann numbers and Grashof 
numbers in the laminar range with d << L to insure 
parallel flow assumptions. 

The parameters K and S of equation (12) are boun- 
ded between zero and one, i.e. 0 < K < 1 and 
0 < S < 1 for all values of flow parameters as can be 
seen from Fig. 2(a) and (b), respectively. At high 
Prandtl number and Reynolds number flow, K-+ 0, 
but the term [KJPrRe/Nu(L/d) in the dominator of 
equation (12a) remains significant. At low Prandtl 
numbers (Pr c< 1) and low to moderate Reynolds 
numbers, both parameters K and S approach unity 
(K + 1 and S -+ 1) which simplifies equation (12a) to 
get an explicit correlation of the dependent parameter 
Re as : 

Re = 
2(1/L)Gr 

4Ha2 + 
4Ha2 tanh Ha 

for Pr << 1. 
4PrGr -~ 

Ha- tanh Ha Nu(L/d) 

(13) 

The induced electric current j in the direction per- 
pendicular to the plane of the magnetic field and flow 
velocity, can then be written as : 

(14) 

and the induced electric current for low Prandtl num- 
bers Pr << 1 is then given by 

2(I/L)GrHa 

4Ha2 + 
4Ha2 tanh Ha 4PrGr _~ 
Ha- tanh Ha Nu(L/d) I 

Pr << 1. (15) 

In the discussion of the flow behaviour associated 
with the proposed one-dimensional solution, we can 
show that the physics of the flow is perfectly described 
with both flow and geometric parameters taken into 
consideration. 

3.2. Frictionfactor modelsolution and the limiting case 
of zero Hartmann number 

The special case of Ha = 0 cannot be derived 
directly from the developed solutions in equation 
(12)-(15) because of the way the shear stress is 
defined. For comparison purposes of physical results, 
the Ha = 0 case is solved in this section. The governing 
equations of momentum and energy transfer (l)-(4) 
of the free-convection loop are solved now using the 
same procedure of the previous Section 3.1, but with 
using the friction factor in defining the shear stress 
rather than the Hartmann-Poiseuille flow model of 
shear. 

The bulk temperature distribution of the friction 
factor model in the domain is exactly the same as that 
obtained in equation (5), but with removing the heat 
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(a) 

0.60 

0.80 

CA 0.60 

Gr 
Fig. 2. A plot of the K parameter and the S parameter in (a) and (b), respectively, as a function of Grashof 

number for L/d = 20, I/L = 0.1, Ha = 5 and Nu = 1.86 at various Prandtl numbers. 

source term due to the induced current by B,, which 
even in Hartmama-Poiseuille model has been eventu- 
ally been neglected. The difference in the solution for 
the induced velocity in the friction factor model comes 
from the handling of the shear stress force term in 
equation (9) which will be expressed as r =fpVi/2, 
where f is the fnction factor correlated for laminar 
flow fully developed flow in a plane channel by 
f = 24/ReDh, where Rew is based on the hydraulic 
diameter of the channel. Substituting r = fp Vi/2 into 
equation (9) and performing the necessary algebra 
will lead to a correlation for the flow parameters as : 

Re(l2-t4Hu’) 
Gr=Fp 

4RePr[Kj 
‘friction factor model 

x ‘A + -(L/d)Nu 

(16) 
which applies to natural convection loop. At very 
low Prandtl number (K + 1 and S + l), the Reynolds 
number can exphcitly be obtained as : 

Ref = 
2(1/L)Gr 

4PrGr 
12 i- 4Ha2 - Nu(L,d,, 

‘friction factor model’ for Pr cc 1 (17a) 

where Ref is based on friction factor model. The 
induced electric current for low Prandtl numbers 
Pr cc 1 is then given by: 

2(l/L)GrHa 

12+4Ha2 - 
4PrGr 

Nu(L/d,) J 

‘friction factor model’ for Pr << 1 (17b) 

wherejrrepresent the induced electric current based on 
the friction factor model. The free convection solution 
obtained in (16) and (17) for the case of zero magnetic 
field strength, Ha = 0, represents the upper bound 
on values of the induced velocity at various Grashof 
numbers for the Hartmann-Poiseuille model. 
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Pl=O.o03 
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0.80 
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Fig. 3. The dimensionless bulk temperature distribution, t& = (Tb- T,)/(T,- TJ along the loop for 
L/d = 20, I/L = 0.1, Ha = 1 for (a) Re = 50, Pr = 0.02, 1 and 5, and for (b) Pr = 1 and Re = 10, 50 and 

150. 

4. RESULTS AND DISCUSSION 

4.1. Hartmann-Poiseuillejow model results 
The one-dimension proposed Hartmann-Poiseuille 

solution of the stable laminar steady flow in the ther- 
mosyphonic loop is presented in this section. The Eck- 
ert number EC is taken as zero throughout the analysis 
since expected induced current is very small to cause 
significant warming of the fluid in the loop. Figure 3 
shows the dimensionless bulk temperature distri- 
bution, &, =(r,-r,)/(Tn-- TJ along the loop at 
L/d = 10,1/d = 1, Ha = 5 for (a) Re = 50, for various 
Prandtl numbers and for (b) Pr = 1 for various values 
of Reynolds numbers. The maximum temperature 
difference (r, - T,), and hence maximum rates of heat 
transfer occur as the upward moving hot fluid enters 
the cold segment at y = I and as the down moving 

cooled fluid is entering the hot section at y = (- 2L + I) 
at the end of the insulated segment. 

Figure 4 shows the variation of Reynolds number, 
Re, as a function of Grashof number, Gr, as obtained 
in equation (12) at Nu = 1.86, L/d = 20, I/d = 2 and 
various values of Hartmann number, Ha, for: (a) 
Pr = 0.02 ; (b) Pr = 1; and (c) Pr = 7. It is clear that 
as the magnetic field strength is increased, a higher 
driving buoyancy force is needed to attain the same 
circulation velocity. In the limit as Hartmann number 
becomes high, the flow Reynolds number at fixed 
Grashof number follows an (Ha)-* power law. At 
zero magnetic field, Ha = 0, the friction factor model 
solution obtained in equation (16) is also seen in Fig. 4 
and the induced velocity is the highest at fixed Grashof 
number and non-zero Hartmann numbers. 

The effect of Prandtl number on the flow is shown 
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100 1000 10000 100000 1000000 10000000 

Gr 

1000 _ (a) pr=l 

Nu=i&, IId= &I i/d=2 

1000 h /cl Pi-=> 

Gr 
Fig. 4. The variation of Reynolds number, Re, as a function of Grashof number, Gr, at Nu = 1.86, 

L/d = 20, I/d = 2 and various values of Hartmann number at (a) Pr = 1, (b) Pr = 7, and (c) Pr = 0.02. 

in Fig. 5, where: Reynolds number is plotted against 
Grashof number for L/d = 20, I/d = 2, Ha = 5 and 
various values of Pr = 0.02, 0.2, 1 and 7. As Re 
becomes larger than 1000, the flow becomes strongly 
dependent on P,r. The smaller the Prandtl number, the 
higher is the mquired Grashof number (buoyancy 
term) to maintain the same flow rate. In the low 
Grashof and Reynolds numbers range, the system 
behaviour is different and a lower Grashof number 
is needed for small Pr-fluid than a high-Pr fluid to 
maintain a given flow. 

The product of the Reynolds and Hartmann num- 
bers if related to the induced current directly by 
ReHa =jd2/{v(cp)‘/*}. Figure 6 shows the dimen- 
sionless induced electric current parameter 
jd2/{v(ap)“*} as a function of Grashof number for: 
(a) Pr = 0.02 ; (b) Pr = 1; and (c) Pr = 7 at L/d = 20, 
I/d = 2 and NM = 1.86. At fixed Hartmann number, 

the induced current increases as the Grashof number 
is increased due to increased buoyancy force which 
directly affect the flow. 

At low Prandtl numbers, the induced electric cur- 
rent parameterjd2/{v(o~)“2} is explicitly correlated to 
Grashof and Hartmann number [see equation (15)] 
and it is shown in Fig. 7 as a function of Hartmann 
number at various Grashof numbers. It is obvious 
that there is an optimal Hartmann number that maxi- 
mises the induced electric current. The logarithmic 
scale used in Fig. 8 smoothes out the sharp peaks of 
induced electric current where for example at 
Gr = 10,000, the peak value of ReHa is equal to 754.2 
at Ha = 1.54977 compared to 443.8 at Ha = 0.5 and 
ReHa = 442.86 at Ha = 5. So about 70% increase in 
induced current at Ho,, = 1.54977 over values 
observed at Ha = 0.5 and 5. The optimal Hartmann 
number is found by differentiating equation (15) with 
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Fig. 5. Reynolds number is plotted against Grashof number for L/d = 20, l/d = 2, Ha = 5 and various 

values of Pr = 0.003, 0.03,0.1, 1 and 5. 
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?I 1000 
2 n Ha=3 

100 0 Ha=5 
0 Ha=8 

10 

1 
lo2 lo3 lo4 lo5 lo6 lo7 lo* 

Gr 

E (c) Pr=7 

Fig. 6. The dimensionless induced electric current parameterjd*/{v(a~)“‘j as a function of Grashof number 
for (a) Pr = 0.02, (b) Pr = 1 and (c) Pr = 7 at L/d = 20, i/d = 2 and Nu = 1.86. 
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Fig. 7. Tb: dimensionless induced electric current parameter jd2/{v(cr~)“‘} as a function of Hartmann 
number at various Grashof numbers for Pv = 0.003, L/d = 20, I/d = 2 and NU = 1.86. 

1.80 

I- P1=.003, Nu=1.86 C Ud=20 

1.60 

1 .oo 

0.80 T 
1000 10000 100000 

Gr 
Fig. 8. The optimal Hartmann number is plotted against Grashof number at Pr = 0.003. 

respect to Ha and equating the result to zero which 
gives after some algebraic manipulations the following 
relation for Ha,,,, : 

0 = -4Ha&,,NuL/d-GrHa&,,Pr 

- 4Ha&,Nu(L/d) set h* (Ha,,,) 

+ 2GrHq&‘r tanh(Ha,,,) - GrPr tanhZ(Hu,,,) 

+8Ha&,Nu(L/d) tanh(Hu,,,). (18) 

The roots of equation (18) for optimal Hartmann 
number can then be found for given values of Gr, 
Pr, Nu and L/d. The optimal Hartmann number that 
maximises the induced current for low Prandtl num- 

bers is plotted in Fig. 8 as a function of the Grashof 
number for the case of Nu = 1.86, L/d = 20 and 
Pr = 0.003. The optimal Hartmann number decreases 
as Grashof number is increased. It is interesting that 
the maximum induced current occurs at quite a low 
magnetic field strength (Ha < 2). Hypothetically, in 
the limit as Gr + co, the optimal Hartmann number, 
approaches zero, Hopt -+ 0. 

In the laminar range of the induced steady flow, 
the presence of Hop, is very significant in terms of 
improving the system efficiency of conversion from 
thermal to electrical in the system in presence of a 
lower strength magnetic field. The heat transfer car- 
ried from the heat source (hot lower portion of the 
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(a) 
100 _ Ha=5, Nu-1.86 L/d=20 & l/d=2 

(b) 100 E 

Ha=0 1 3 5s 10 

.‘+=I. Nu=1.86, Ud=ZO & I/d=2 

Gr 
Fig. 9. The heat transfer parameter, r, plotted as a function of Gr number for (a) various Prandtl numbers 

and for (b) different values of Hartmann number at L/d = 20, I/d = 0.1, Nu = 1.86. 

loop) to the heat sink (cold upper portion of the loop) 
is given by : 

s 

*,?--I 
QL = 2h (TbW - TJ dv. (19) 

, 

Using the expression for T&J) of equation (5b) and 
integrating equation (19) gives the rate of heat loss 
from the upper cold portion of the loop in dimen- 
sionless form as : 

on Gr and Ha. In Fig. 9, the heat transfer parameter, 
r, is plotted as a function of Gr number at L/d = 20, 
I/d = 2, Nu = 1.86, EC = 0 for different values of (a) 
Prandtl numbers at Ha = 1 and (b) Hartmann num- 
bers at Pr = 1. As Prandtl number is increased the 
heat transfer parameter r increases at fixed Grashof 
number. The rate of heat transfer in presence of a 
magnetic field decreases with increased Ha, at fixed 
Gr, unlike the induced current dependence. 

-e!L- 
I- =2LhAT 4.2. Comparison between the Hartmann-Poise&e and 

the friction factor models 

= f$$$e- 
( 

rn(ZL--l) _e-m,] + ,,,a,,,) (20) The MHD Hartmann-Poiseuille model for the free 
convection loop would represent the system behaviour 
more accurately than the friction factor model for 

where B’ was defined earlier as B/AT and B is given large Hartmann number flows because it takes into 
in equation (7b). The heat transfer parameter, I-, account the changes in velocity gradients at the wall 
defined in equation (20) is a function of all the system surface due to the presence of the magnetic field. This 
parameters : Pr, Nu, L/d, I/d and Re, where Re depends effect of the magnetic field on the shear stress is not 
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Fig. 10. The variation of Reynolds number with Grashof number in both models at various Hartmann 
numbers at (a) Pr = 1 and (b) Pr = 0.02 for Nu = 1.86, L/d = 20 and I/L = 0.1. 

significant at low Hartmann numbers [5]. Figure 10 
shows the variation of Reynolds number with Grashof 
number in both models at various Hartmann numbers 
at (a) Pr = 1 and (b) Pr = 0.02 for Nu = 1.86, 
L/d = 20 and Z/d = 2. Both models give similar result 
for the induced flow Reynolds number at low Ha, but 
as Hartmann is increased the percentage difference 
in the solution reach values not more than 5% for 
Ha < 20. GeneraJly the error difference is small at low 
Hartmann and also at high Reynold and Grashof 
numbers with intermediate values of Ha. 

The friction factor model has the advantage of giv- 
ing a simpler expression for the induced current as a 
function of Hartmann number and the other system 
parameters at 108~ Prandtl numbers [compare equa- 
tions (15) and (17b)J. Actually using the expression 
for j, given in equation (17b), we can find a closed 
form relation for the optimal Hartmann number for 
maximum inducad current as a function of the system 
parameters. Thins is done by differentiating equation 

(17b) with respect to Ha and equating ai,iaHa to zero 
which gives an expression for Ho,, as : 

J GrPr 
(Ha& = ___ for Pr << 1 3 - NulL14 (21) 

where subscript f refers to the friction factor model. 
A comparison is now made between the present model 
and the friction factor model. Figure 11 shows a plot 
of optimal Hartmann number vs Grashof number 
using both the friction factor model and the Hart- 
mann-Poiseuille model. The friction factor model 
overpredicts Ha, by 7-9% as compared to the more 
accurate Hartmann-Poiseuille flow model. 

5. CONCLUSIONS 

A theoretical analysis was carried out with one- 
dimensional approach to derive the hydrodynamic 
model of buoyancy-driven electrically-conducting 
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Fig. 11. A plot of optimal Hartmann number vs Grashof number using both the friction factor model and 

the Hartmann-Poiseuille model. 

fluid in a vertical loop placed in a transverse magnetic University of Beirut to visit MIT Mechanical Engineering 

field. The closed form solution of the flow velocity is Department during the summer of 1995. The help of the 

used to medict the induced electric current of the 
research assistant Shawki Fattal is also acknowledged. 

system. According to the solution there exist an opti- 
mal strength of the magnetic field that depends on the 1. 
system flow and geometric parameters to maximise 
the induced electric current. At high Grashof number 
only a low strength magnetic field is required to get a 2, 
significant induced electric current. Future work will 
address the conversion efficiency of thermal to elec- 
trical energy of the described magneto hydrodynamic 3. 
generator and will include experimental verification 4, 
of the results. 
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